

July 24, 1991

Dennis Gagne
Regional Sample Control Custodian
U.S. Environmental Protection Agency
90 Canal Street
Boston, MA 02114

Re: 68-W9-0003

Work Assignment R01005 Case 16259, SDG MAT367 Skinner and Sherman

Ciba-Geigy Metals: 6/Water Cyanide: 6/Water

Dear Mr. Gagne:

The following is a Data Validation Report for CLP case 16259, which was generated by QuantaLex Inc., Alliance's Data Validation Sub-Contractor for this work assignment. The inorganic analytical data for this case contained low level water samples which were collected by Alliance Technologies Corporation at the Ciba-Geigy Site and analyzed by Skinner and Sherman.

If you have any questions, please feel free to contact me at (508) 970-5600 X 4201.

Sincerely,

Cynthia S. Fortin

Data Validation Coordinator

encl.

cc: Deborah Szaro/Moira Lataille, Region I TPO

Ciba Sheigy oz ang 91 MH TRC/T6 9104018-IA INCORPORATED

12600 West Colfax Avenue Suite A-300 Lakewood, Colorado 80215 TEL 303 237-7879 FAX 303 234-5858

June 19, 1991

Ms. Joanna Hall Alliance Technologies Corp. Boott Mills South, Foot of John Street Lowell, MA 01852

Re: Case 16259, SDG MAT367

Skinner & Sherman Metals: 6/Water Cyanide: 6/Water

Dear Ms. Stallings:

A validation was performed on the analytical data from six water samples which were collected by Alliance Technologies Corp. and submitted to Skinner & Sherman for Inorganic analysis. The data were evaluated based on the following parameters:

- * Data completeness
- * Holding times
 - Calibration verification
- Laboratory and field blank analyses
- * ICP interference check sample results
 - Matrix spike recoveries
 - Laboratory and field duplicates
- Laboratory control sample results
 - Furnace atomic absorption results
 - Serial dilution results
- * Detection limit results
- *

 Sample results
 - * All criteria were met for this parameter

Table 1 summarizes the validation recommendation which were based on the following information.

Calibration Verification

Element	CRI <u>True Value</u>	Found	<u>%R</u>
Cr		15.4	77.1
Cu	50.0	61.6	61.6
Zn	40.0	51.5	51.5

All positive values less than 3X CRDL are estimated (J).

The Selenium initial calibration correlation coefficient was less than 0.995. All non-detects are estimated (UJ).

Blanks

Element	Maximum Conc./Units	Action Level
Ba	10.4 ug/L	52 ug/L
Co	5.0 ug /L	25 ug/L
Cu	19.1 ug/L	95.5 ug/L
Zn	11.7 ug/L	58.5 ug/L

Value > IDL, < CRDL, and < Action Level = Report value estimated (UJ).

Value > IDL, > CRDL, and < Action Level = Report value U.

Value > IDL and > Action Level = Report value unqualified.

Value < IDL and blank < -IDL = Raise detection limits to CRDL and Report value UJ.

Matrix Spike

TV DDTVC				
Analyte	SSR	<u>SR</u>	S	<u>%R</u>
Se	5.16 ug/L	20.0 U ug/L	10.0 ug/L	51.6

Positive results are estimated (J) and non-detects are estimated (UJ) when spike recovery is between 30%-74%.

Field Duplicates

Dapmonos	·		
<u>Analyte</u>	Sample Result	Duplicate Result	RPD
Al	3680 ug/L	5340 ug/L	36.85.5

Positive results are estimated (J).

Furnace Atomic Absorption Results

		Sample Result/	Analytical Spike	%
ITR#	<u>Analyte</u>	<u> </u>	Result/Units	Recovery
MAT368	Se	4.0 U ug/L	6.99 ug/L	70%
MAT369	Se	4.0 U ug/L	8.30 ug/L	83%
MAT370	Se	4.0 U ug/L	5.23 ug/L	52%
MAT371	Se	4.0 U ug/L	7.86 ug/L	79%
MAT367	Tl	20.0 U ug/L	13.8 ug/L	69%
MAT368	Tl	3.0 U ug/L	8.95 ug/L	45%
MAT370	Tl	3.0 U ug/L	15.2 ug/L	76%
MAT371	Tl	3.0 U ug/L	14.9 ug/L	74%

Non-detect sample values are estimated (UJ) if spike recovery < 85%.

ICP Serial Dilution Results

			
Analyte	Sample Result	Serial Dilution	<u>%D</u>
Cr	162.34 ug/L	137.15 ug/L	15.5

All positive values are estimated (J).

Very truly yours, QuantaLex, Inc.

Richard Kantrowitz Associate Consultant

cc: Keith Wegner, President

SKINNER & SHERMAN CASE 16259

TABLE I - RECOMMENDATIONS SUMMARY

		the state of the s		
Aluminum	J 7	Magnesium	A .	
Antimony	A	Manganese	A	
Arsenic	Α	Mercury	A	
Barium	A ¹ .	Nickel	A	
Berylium	A	Potassium	A	
Cadmium	A	Selenium	J1,J4,J6	
Calcium	\mathbf{A}^{\cdot}	Silver	Α	
Cobalt	J 3	Sodium	A	
Chromium	J2,J5	Thallium	. J 4	
Copper	A1,J3,J5	Vanadium	Α	
Iron	A	Zinc	A1,J5	
Lead	Α	Cyanide	Α	

- A Accept all data.
- A1 Accept data, raise the sample detection limit(s) due to blank contamination.
- J1 Estimate (UJ) non-detects due to poor pre-digestion matrix spike recovery.
- J2 Estimate (J) positive values due to poor serial dilution recovery.
- J3 Estimate (UJ) positive values due to blank contamination and values < CRDL.
- J4 Estimate (UJ) non-detects due to poor analytical spike recovery.
- J5 Estimate (J) positive values less than 3X CRDL due to poor CRDL check standard recovery.
- J6 Estimate (UJ) non-detects due to initial calibration correlation coefficient < 0.995.
- J7 Estimate (J) positive values due to poor duplicate precision.

Region	1	

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO16259 LABORATORYSkinner & Sherman SDG #MAT367 SOW #7/88 DPO: ACTION FYI			SITECiba-Geigy NO. OF SAMPLES/ MATRIX6/Water REVIEWER (IF NOT ESD)QuantaLex, Inc. REVIEWER'S NAME Richard Kantrowitz COMPLETION DATEJune 19, 1991			
	<u>Data</u>	Assessme	nt Summary			
		ICP	AA	Hg	Cyanide	
l. Holding Times	_	0	_ 0_		0	
2. Calibrations	· —	0	<u> </u>	_0	O	
3. Blanks	_	<u>M</u>	<u> </u>	_0	_ 0	
. ICS		0	N/A	N/A	N/A	
s. LCS		0		_ O	<u> </u>	
6. Duplicate Analysis	_	0		_ 0	0	
. Matrix Spike		0		<u> </u>		
s. MSA	<u>I</u>	N/A	_ 0	<u>N/A</u>	N/A	
Serial Dilution		0	N/A_	N/A	N/A	
0. Sample Verification		0	0		O	
1. Other QC	_	0	0	_0	<u> </u>	
2. Overall Assessment	_	<u>M</u>	M	<u> </u>	<u> </u>	
O = Data had no problems M = Data qualified due to Z = Data unacceptable. X = Problems, but do not a N/A = Not applicable.	major problems.	or problems	3.			
ACTION ITEMS:						
NOTABLE PERFORMAN	NCE:				<u></u>	

Site Name	Ciba-Geigy		
Reference 1	Number	 	

REGION I REVIEW OF INORGANIC CONTRACT LABORATORY DATA PACKAGE

The hardcopied and the quality as	Skinner & She ssurance and per	erman de formance	lata packag data summ	e rece arize	eived at Region I has l d. The data reviewed	been reviewed included:
Case No. SDG No. No. of Samples	MAT367	SAS No. Matrix	Water		Sampling Date(s): Shipping Date(s): Date Rec'd by Lab:	04/19/91
Trip Blank N Equipment I	No.: <u>MAT372</u>			69. N	MAT370, MAT371, M	IAT372
SOW No	ne laboratory to t	the Region	ıs, EMSL-I	V, a	be done and that assond SMO. The general of:	ociated reports criteria used to
- Holdi - Calib - Blank - ICP I - Matri		ries		- I - I - I	Field Duplicates Lab Control Sample Results Furnace AA Results CP Serial Dilution Re Detection Limit Result Sample Quantitation	sults
Overall commen	ts: Data accepta	able with o	<u>qualification</u>	1s		
				-		
Definitions of Qu	ıalifiers:					
R - Reject da	le data. nate data due to take to due to due to quality and not detected.	quality con control cr	ntrol criteri iteria.	a.		
Reviewer:	ched K	mly	<i>'</i>	D	ate:6/19/9	7/

I. DATA COMPLETENESS

MISSING INFORMATION	DATE LAB CONTACTED	DATE RECEIVED
None		
		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		<u> </u>
		·
		
	· · · · · · · · · · · · · · · · · · ·	<u> </u>
<u> </u>		
		·
	,	
	·	· · · · · · · · · · · · · · · · · · ·
		
·		

II. HOLDING TIMES

Complete table for all samples and circle the fractions which are not within criteria.

		·			
DATE SAMPLED	Hg DATE ANAL	CYANIDE DATE ANAL	OTHERS DATE ANAL	pH	ACTION
04/18/91	05/09/91	05/02/91	05/09/91		None
04/18/91	05/09/91	05/02/91	05/09/91	·	None
04/18/91	05/09/91	05/02/91	05/09/91		None
04/18/91	05/09/91	05/02/91	05/09/91	<u>-</u>	None
04/18/91	05/09/91	05/02/91	05/09/91		None
04/18/91	05/09/91	05/02/91	05/09/91		None
	,		-		
<u> </u>				<u> </u>	
. 					
<u> </u>					
			·		
	04/18/91 04/18/91 04/18/91 04/18/91 04/18/91	SAMPLED ANAL 04/18/91 05/09/91 04/18/91 05/09/91 04/18/91 05/09/91 04/18/91 05/09/91 04/18/91 05/09/91	SAMPLED ANAL ANAL 04/18/91 05/09/91 05/02/91 04/18/91 05/09/91 05/02/91 04/18/91 05/09/91 05/02/91 04/18/91 05/09/91 05/02/91 04/18/91 05/09/91 05/02/91 04/18/91 05/09/91 05/02/91	SAMPLED ANAL ANAL ANAL 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91	SAMPLED ANAL ANAL ANAL pH 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91 04/18/91 05/09/91 05/02/91 05/09/91

METALS - 180 days from sample collection MERCURY - 28 days from sample collection CYANIDE - 14 days from sample collection

ACTION:

- 1. If holding times are exceeded, all positive results are estimated (J) and non-detects are estimated (UJ).
- 2. If holding times are grossly exceeded, the reviewer may determine that non-detects are unusable (R).

III A. INSTRUMENT CALIBRATION (Section 1)

1. Recovery Criteria

List the analytes which did not meet the percent recovery (%R) criteria for Initial or Continuing Calibration.

<u>DATE</u>	ICV/CCV#	<u>ANALYTE</u>	<u>%R</u>	ACTION	SAMPLES AFFECTED
None	· · · · · · · · · · · · · · · · · · ·				<u> </u>
<u> </u>	 	*******			
· 		· .			
					
					
•					
	-	· · · · · · · · · · · · · · · · · · ·		 .	
		<u> </u>			

ACTIONS:

If any analyte does not meet the %R criteria, follow the actions stated below:

For Positive Results:

	Accept	Estimate (J)	Reject (R)
Metals	90-110%R	75-89%R, 111-125%R	<75%R, >125%R
Mercury	80-120%R	65-79%R, 121-135%R	<65%R, >135%R
Cyanide	85-115%R	70-84%R, 116-130%R	<70%R, >130%R

For Non-detected Results:

	Accept	Estimate (UJ)	Reject (R)
Metals	90-125%R	75-89%R	<75%R, >125%R
Mercury	80-135%R	65-79%R	<65%R, >135%R
Cyanide	85-130%R	70-84%R	<70%R, >130%R

III B. INSTRUMENT CALIBRATION (Section 2)

2. Analytical Sequence

A.	Did the laboratory use the proper number of standards for calibration as described in the SOW?	Yes
В.	Were calibrations performed at the beginning of each analysis?	Yes
C.	Were calibration standards analyzed at the beginning of sample analysis and at a minimum frequency of ten percent or every two hours during analysis, whichever is more frequent?	Yes
D.	Were the correlation coefficients for the calibration curves for AA, Hg, and $CN \ge 0.995$?	No
E.	Was a standard at 2xCRDL analyzed for all ICP analyses?	Yes
If no, the di effect affect	ata may be affected. Use professional judgement to determine t and qualify the data accordingly. Discuss any actions below a ted.	the severity of the and list the samples
Se (run 1, 5	5/8/91) initial calibration correlation coefficient was equal to 0.9	9929.
Se (run 2, 5	(/9/91) initial calibration correlation coefficient was equal to 0.9	9858.
The CRDL	check sample recovery for Cr was 77.1%.	
The CRDL	check sample recovery for Cu was 123.2%.	
The CRDL	check sample recovery for Zn was 128.8%.	-

IV A. BLANK ANALYSIS RESULTS (Sections 1-3)

List the blank contamination in Sections 1 and 2 below. A separate worksheet should be used for soil and water blanks.

1. Labora	tory Blanks		Matrix:	Water
<u>DATE</u>	ICB/CCB#	PREP BL	ANALYT	E CONC./UNITS
05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91 05/09/91	CCB4 CCB1 CCB4 CCB1 CCB4 CCB4 CCB1 CCB4 CCB1 CCB1	PB PB	Al Sb Ba Cd Ca Ca Co Cu Fe Mn K Na Zn Pb	41.8 ug/L 23.5 ug/L 10.4 ug/L 3.8 ug/L 32.8 ug/L -17.2 ug/L 5.0 ug/L 19.1 ug/L 55.0 ug/L 2.8 ug/L 136 ug/L 11.7 ug/L -1.4 ug/L -1.4 ug/L
2. Equipm DATE	EQUIP BL#	ANALY	ZTE	CONC./UNITS
05/09/91		Al		20.5 ug/L
05/09/91	MAT372	<u>Cu</u>		9.4 ug/L
05/09/91	MAT372	Pb	 -	1.1 ug/L
05/09/91	MAT372	Na		128 ug/L
05/09/91	MAT372	Zn		10.3 ug/L
3. Freque	ncy Requirements		·	
A. B. If no, the deffect affect	Was a preparation blank and matrix, for every 20 sample digestion batch? Was a calibration blank run or every 2 hours, whichever at a may be affected. Use prot and qualify the data accordited.	s, and for each every 10 sample is more frequen ofessional judgen	nt? nent to determin	Yes Yes the severity of the and list the samples
			·	

IV B. BLANK ANALYSIS RESULTS (Section 4)

4. Blank Actions

The Action Levels for any analyte is equal to five times the highest concentration of that element's contamination in any blank. The action level for samples which have been concentrated or diluted should be multiplied by the concentration/dilution factor. No positive sample result should be reported unless the concentration of the analyte in the sample exceeds the Action Level (AL). Specific actions are as follows:

- 1. When the concentration is greater than the IDL, but less than the Action Level, report the sample concentration detected with a U.
- 2. When the sample concentration is greater than the Action Level, report the sample concentration unqualified.

MATRIX:_Y	Vater	·	MATRIX:	•	· ————
ELEMENT	MAX. CONC./ UNITS	AL/ <u>UNITS</u>	<u>ELEMENT</u>	MAX. CONC./ UNITS	AL/ <u>UNITS</u>
<u>Ba</u>	10.4 ug/L	52.0 ug/L			
<u>Co</u>	5.0 ug/L	25.0 ug/L			· .
Cu	19.1 ug/L	95.5 ug/L			·
Zn	11.7 ug/L	58.5 ug/L			
		· · · · · · · · · · · · · · · · · · ·		·	
					
					
·					
			·		

NOTE: Blanks analyzed during a soil case must be converted to mg/kg in order to compare them with the sample results.

Conc. in ug/L x Volume diluted to (200 ml) x 1L x 1000 gm x 1 mg = mg/kg Weight digested (1 gram) 1000ml 1 kg 1000ug

Multiplying this result by 5 to arrive at the action level gives a final result in mg/kg which can then be compared to sample results.

V A. ICP INTEFERENCE CHECK SAMPLE (Sections 1 and 2)

. Recovery Criteria			•
ist any elements in the ICS AB solution	on which did no	t meet the crit	eria for %R.
DATE ELEMENT	<u>%R</u>	<u>ACTION</u>	SAMPLES AFFECTED
None			
	 		
			
			·
	<u></u>		
·		<u> </u>	
	,		
· ·	 		· · · · · · · · · · · · · · · · · · ·
ACTIONS:			·
f an element does not meet the %R cri Positive sample results Non-detected results	Perce	e actions stated ent Recovery 50%-79% > J UJ	
. Frequency Requirements			· · · · · · · · · · · · · · · · · · ·
Were interference QC samples ru and end of each sample analysis i of twice per 8 hour working shift more frequent?	run or a minimu	ng m	Yes
f no, the data may be affected. Use pre effect and qualify the data accord affected.	ofessional judge lingly. Discuss	ement to detern any actions be	nine the severity of the low and list the samples
	· · · · · · · · · · · · · · · · · · ·		·
·	<u>.</u>		

V B. ICP INTERFERENCE CHECK SAMPLE (Section 3)

3. Report th should no	e concentration of be present.	of any elements	detected in	the ICS A so	lution > 2x	IDL that
ELEMENT		C. DETECTED THE ICS	C	ONC. OF I IN THE I		RENTS
			AL	CA	FE	MG
Ba	<u>12</u>		481000	448250	182650	450900
Cd	<u>6</u>	<u> </u>	481000	448250	182650	450900
Cu	14		481000	448250	182650	450900
<u>Ni</u>	11		481000	448250	182650	450900
Ag			481000	448250	182650	450900
<u>Na</u>	<u>1732</u>		<u>481000</u>	448250	182650	450900
<u>Zn </u>	216		481000	448250	182650	450900
	ELEMENT AFFECTED	SAMPLE CONC. (ug/L)	COI	INTERFERING. CA FE	MG	ESTIMATED INTERF. (ug/L)
ACTIONS:						
concentra solution. 2. Estimate 50% or m 3. Reject (R element. 4. Estimate	tions of Al, Ca, (J) positive results ore of that in the) positive results	s if the reported of ed results for wh	less than 50 lements for concentration	% of their ressamples with	spective levels of itself to the i	vels in the ICS nterferents

	•				
REGION I Data Review	Worksheets	•			
VI. MAT	RIX SPIKE				
TR # <u>MAT</u>	371S	 .		MATRIX:_	Water
1. Recovery	Criteria				
List the perce	ent recoveries fo	r analytes which	did not meet t	the required crites	ria.
SR = Sampl	es sample result e result t of spike added				
ANALYTE	<u>SSR</u>	<u>SR</u>	<u>s</u>	<u>%R</u>	ACTION
<u>Se</u>	5.16 ug/L	20.0 U ug/L	10.0 ug/L	51,6	J/UJ
	 			 	-
 		-		_	_
	·				
				<u> </u>	
		·		<u> </u>	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		-
Matrix Spike	Actions apply t	o all samples of	the same matri	ix.	
ACTIONS:					
1. If the sa action i	ample concentra s taken.	tion exceeds the	spike concent	ration by a factor	r of 4 or more, no
2. If any a	nalyte does not	meet the %R cr	iteria, follow th	ne actions stated 1	below:
			Percent Re <30% 30%	ecovery -74% >125%	· ·
	ve sample result detected results	:S	J J R Ü	J J A	
2. Frequenc	y Criteria				
	•	•			•

A. Was a matrix spike prepared at the required frequency?

Yes

B. Was a post digestion spike analyzed for elements that did not meet required criteria for matrix spike recovery?

Yes

A separate worksheet should be used for each matrix spike pair.

VII. LABORATORY DUPLICATES

List the concentrations of any analyte not meeting the criteria for duplicate precision. For soil duplicates, calculate the CRDL in mg/kg using the sample weight, volume, and percent solids data for the sample. Indicate what criteria was used to evaluate precision by circling either the RPD or CRDL for each element.

				MATRIX: Soil		
Element	<u>CR</u> water ug/L	<u>DL</u> <u>soil</u> mg/kg	Sample # MAT371	Duplicate # MAT371D	RPD .	Action
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	200 60 10 200 5 5 5 5000 10 50 25 100 3 5000 15 0.2 40 5000 5000 10 5000 10 5000	None				
Cyanide	10					

Laboratory Duplicate Actions should be applied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elements which have an RPD >20% for waters and >35% for soils.
- 2. If sample results are less than 5x the CRDL, estimate (J) positive results for elements whose absolute difference is >CRDL (2xCRDL for soils). If both samples are non-detected, the RPD is not calculated (NC).

VIII. FIELD DUPLICATES

List the concentrations of all analytes in the field duplicate pair. For soil duplicates, calculate the CRDL in mg/kg using the sample weight, volume, and percent solids data for the sample. Indicate what criteria was used to evaluate the precision by circling either the RPD or CRDL for each element.

			MATRIX: Soil		<u> </u>
Element	CRDL water soil ug/L mg/kg	Sample # MAT367	Duplicate # MAT368	RPD	Action
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel	200 200 200 500 500 100 100 100 100 100 1	3680 17.0 U 19.7 75.1 1.0 U 3.0 U 53500 8.0 4.0 U 16.1 9860 8.8 5980 4500 0.20 U 22.0	5340 17.0 U 13.3 75.8 1.0 U 3.0 U 51500 13.3 6.1 14.8 12400 8.4 6300 4340 0.20 U 22.3	36.8 NC 38.8 0.9 NC NC 3.8 49.8 200 8.4 22.8 4.7 5.2 3.6 NC 1.4	J/A None None None None None None None None
Potassium Selenium Silver	5000	7400 4.0 U 5.0 U	7450 4.0 U 5.0 U	0.7 NC NC	None None None
Sodium Thallium Vanadium Zinc Cyanide	5000	115000 15.0 U 12.4 31.7 10.0 U	109000 3.0 U 14.2 30.5 10.0 U	5.4 NC 13.5 3.9 NC	None None None None None

Field Duplicate Actions should be applied to all other samples of the same matrix type.

ACTIONS:

- 1. Estimate (J) positive results for elements which have an RPD >30% for waters and >50% for soils.
- 2. If sample results are less than 5x the CRDL, estimate (J) positive results and (UJ) non-detected results for elements whose absolute difference is >2xCRDL (4xCRDL for soils). If both samples are non-detected, the RPD is not calculated (NC).

IX. LABORATORY CONTROL SAMPLE

•							
1. Aqueous L	<u>CS</u>						
List any LCS re	ecoveries not within	n the 80-120	% criteria	a and the sa	mples af	fected.	
DATE	ELEMENT	<u>%</u>	<u>6</u> R	<u>ACTION</u>	SAM	IPLES AFF	<u>ECTED</u>
None	·	·					
· 						·	
 				·			
· · · · · · · · · · · · · · · · · · ·	•	····	 .				-
2. Solid LCS							
List any analyto sample. The 80	es that were not wit 0-120% criteria is n	hin the contr ot used to ev	rol windo valuate sc	ws set by the	he EPA i sults.	for the solid	LCS
ELEMENT	LCS CONC.	CONTROL	L WINDOY	WS AC	CTION S	SAMPLES A	FFECTED
None							
	,		_				
						······	
				 . 			
·							
ACTIONS: Aqueou	e I CS		Darcas	nt Recovery			
Aqueou		<u><</u>	< <u>1 cicci</u>		<u>>120%</u>		
Positive Non-de	e sample results tected results	•	R R	J UJ	J A		
Solid Lo	<u>CS</u>		EPA Con Windows			A Control adows	
Positive Non-de	e sample results tected results		J UJ			J A	
3. Frequency	<u>Criteria</u>						

Was an LCS analyzed for every matrix, every digestion batch, and every 20 samples?

Yes

X A. FURNACE ATOMIC ABSORPTION ANALYSIS

1. <u>D</u>	uplicate Precision
<u>X</u>	Duplicate injections and one-point analytical spikes were performed for all samples: duplicate injections agreed within $\pm 20\%$.
	Duplicate injections and/or spikes were not performed for the following samples/ elements:
<u></u>	Duplicate injections did not agree within ± 20% for samples/elements:
2. <u>Po</u>	ost Digestion Spike Recoveries
	_ Spike recoveries met the 85-115% recovery criteria for all samples.
X	Spike recoveries did not meet the 85-115% criteria but did not require MSA for the following samples/elements: Se (MAT368, MAT369, MAT370, MAT371) Tl (MAT367, MAT368, MAT370, MAT371)
X	MSA was used to quantitate analytical results when contractually required. X Correlation coefficients ≥0.995, accept results. Correlation coefficients <0.995 for sample numbers/elements:
ACTI	ONS:
1.	Estimate (J) positive results if duplicate injections are outside ± 20 %RSD or CV.
2.	If the sample absorbance is <50% of post digestion spike absorbance, the following actions should be applied:
	<u>Percent Recovery</u> ≤10% 11%-84% >115%
	Positive sample results J or R Non-detected results R UJ A
3.	Estimate (J) sample results if MSA was required and not performed.

Estimate (J) sample results if correlation coefficient was <0.995.

XI. INDUCTIVELY COUPLED PLASMA (ICP) SERIAL DILUTION ANALYSIS										
	Serial Dilutions were performed for each matrix and results of the diluted sample analysis agreed within 10% of the original undiluted analysis.									
	Serial Dilutions were not performed for the following:									
<u>X</u>	Serial Dilutions were performed, but analytical results did not agree within 10% for analyte concentrations greater than 50x the IDL before dilution.									
Report al analysis.	l results	below that	do not meet	the required labor	atory criteria for I	CP serial	dilution			
MATRIX	K: <u>Soil</u>									
ELEMEN	<u>NT</u>	<u>IDL</u>	50xIDL	SAMPLE RESULT	SERIAL DILUTION	<u>%D</u>	ACTION			
Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Mangane Nickel Potassium Silver Sodium	n m m se	3.0	150	162.34	137.15	<u>15.5</u>				
Vanadiur Zinc Actions a	pply to a	ill samples	of the same	matrix.						
ACTION	S:									

Estimate (J) positive results if %D >15.

1.

XII. DETECTION LIMIT RESULTS

1. 11150	idinent Detection Limits	
<u>X</u>	Instrument Detection Limit results were present and found Required Detection Limits.	to be less than the Contract
<u>X</u>	Instrument Detection Limits were not included in the data	package on Form X.
	Instrument Detection Limits were present, but the criteria following elements:	was not met for the
2. <u>Rep</u>	orting Requirements	
	Were sample results on Form I reported down to the IDL not the CRDL for all analytes?	Yes
N/A	Were sample results that were analyzed by ICP for Se, Tl, As, or Pb at least 5x IDL?	
	Were sample weights, volumes, and dilutions taken into account when reporting detection limits on Form I?	Yes
If no, th ta	te reported results may be inaccurate. Make the necessary characters and request that the laboratory resubmit the corrected da	anges on the data summary
No IDL	for CN.	

XIII. SAMPLE QUANTITATION

X Sample results fall within the linear range for ICP and within the calibrated range for all other parameters.

Sample results were beyond the linear range/calibration range of the instrument for the following samples/elements:

In the space below, please show a minimum of one sample calculation per method:

ICP:

All samples within this SDG were water samples.

FURNACE:

All samples within this SDG were water samples.

MERCURY:

All samples within this SDG were water samples.

CYANIDE:

All samples within this SDG were water samples.

For soil samples, the following equation may be necessary to convert raw data values (usually reported in ug/L) to actual sample concentrations (mg/kg):

The lab is required to use 1 gram sample (wet weight) to 200 ml.

Wet weight concentration = digest conc. in $\underline{ug} \times \underline{200 \text{ ml}} \times \underline{1 \text{ L}} \times \underline{1000 \text{ gm}} \times \underline{1 \text{ mg}} = \underline{mg}$ $\underline{L} \quad 1 \text{ gm} \quad 1000 \text{ ml} \quad 1 \text{ kg} \quad 1000 \text{ ug} \quad \text{kg}$

In addition, the sample results are converted to dry weight using the percent solids calculations:

Wet weight conc. x 100 = final concentration, dry weight (mg/kg) % solids

TABLE

7

Page

1 of 1

MAT367

CLP INORGANIC ANALYSIS

CASE NO. 16259

SDG NO.

ANALYTICAL RESULTS

Sample Location		Clba	Ciba	Ciba	Ciba	Ciba	Ciba		
		Gelgy	Gelgy	Gelgy	Gelgy	Gelgy	Gelgy		
Sample Number		MW-145	MW-145	MW-115	MW-155	MW-185		* -	
			1		İ				
Traffic Report Number		MAT367	MAT368	MAT369	MAT370	MAT371	MAT372		ļ
Remarks		WATSO7	+	MA1308	MA1370	MA13/1			
Hallstys			Dup. of MAT367				Field Blank		•
Sampling Date		04/18/91	04/18/91	04/18/91	04/18/91	04/18/91	04/18/91		
Inorganic Elements		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
Aluminum	Р	3680 J	5340 J	5460 J	5070 J	10600 J	20.5 J		
Antimony	P								
Arsenic	F	19.7	13.3	32.3	36.2	16.1			
Barlum	· P	75.1	75.8		132	117			
Beryllium	Р			1.2				· · · · · · · · ·	
Cadmlum	Р								
Caldum	Р	53500	51500	25000	52700	31500			
Chromlum	Р	8.0 J	13.3 J	23.9 J	34.9 J	162 J			
Cobalt	P								
Copper	Р						9.4 J		
Iron	Р	9860	12400	32500	31000	17300			
Lead	F	8.8	8.4	23.2	7.5	8.1	1.1	-	
Magnesium	Р	5980	6300	4070	6560	5730			Ţ <u>-</u>
Manganese	P	4500	4340	352	1930	1210			
Mercury	٧		<u> </u>		T			•	
Nickel	Р	22.0	22.3	13.8	70.0	275			
Potassium	Р	7400	7450	3530	13800	6930			
Selenium	F							-	
Silver	Р								
Sodium	Р	115000	109000	11300	27100	21300	128		
Thallium	F								
Vanadium	P	12.4	14.2	12.8	11.6	21.9			
Zinc	Р			2420	99.0	61.9	10.3 J		
Cyanide	С								

Analytical Method

A blank space indicates the element was not detected.

F Furnace

Quantitation is approximate due to limitations identified in the quality control review.

P ICP/Flame AA

R Value is rejected.

V Cold Vapor

NA Not Analyzed

C Colorimetric

Sample Detection Limits for the elements listed above are reported in Table 8.

TABLE

Page

1 of 1

MAT367

CLP INORGANIC ANALYSIS

CASE NO. 16259

SDG NO.

SAMPLE DETECTION LIMITS

Sample Location	<u> </u>		Ciba	Clba	Ciba	Ciba	Clba	Clba		
			Gelgy	Gelgy	Geigy	Gelgy	Gelgy	Gelgy		
Sample Number			MW-145	MW-145	MW-115	MW-155	MW-185			
Traffic Report Number		_	MAT367	MAT368	MAT369	MAT370	MAT371	MAT372	<u></u>	
Remarks			IVIA 1 367	Dup. of	MA1369	MA1370	MA13/1			
				MAT367				Field Blank		
Sampling Date			04/18/91	04/18/91	04/18/91	04/18/91	04/18/91	04/18/91		
Percent Solids			0.0	0.0	0.0	0.0	0.0	0.0		
Inorganic Elements		Instrument Detection Limits (ug/L)	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
Aluminum	Р	14.0	14.0	14.0	14.0	14.0	14.0	14.0		
Antimony	_ P	17.0	17.0	17.0	17.0	17.0	17.0	17.0		
Arsenic	F	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Barlum	Р	. 2.0	2.0	2.0	36.0	2.0	2.0	2.0	-	
Beryllium	P	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	
Cadmium	_P	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Calcium	P	15.0	15.0	15.0	15.0	15.0	15.0	15.0		
Chromium	Ρ	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Cobalt	Р	4.0	4.0	6.1 UJ	4.0	5.9 UJ	11.7 UJ	4.0		
Copper	P	4.0	16.1 UJ	14.8 UJ	41.3	11.7 UJ	25.3	4.0		
Iron	Р	8.0	8.0	8.0	8.0	8.0	8.0	8.0		
Lead	F	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Magnesium	P	29.0	29.0	29.0	29.0	29.0	29.0	29.0		i
Manganese	Р	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
Mercury	· V	0.2	0.2	0.2	0.2	0.2	0.2	0.2		ļ
Nickel	Р	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Potassium	Р	72.0	72.0	72.0	72.0	72.0	72.0	72.0		
Selenium	F	4.0	4.0 UJ	4.0 UJ	4.0 UJ	4.0 UJ	20.0 UJ	4.0 UJ		
Silver	Р	5.0	5.0	5.0	5.0	5.0	5.0	5.0		<u> </u>
Sodium	Р	24.0	24.0	24.0	24.0	24.0	24.0	24.0		
Thalllum	·F	3.0	15.0 UJ	3.0 UJ	3.0	3.0 UJ	3.0 UJ	3.0		
Vanadium	Р	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Zinc	Р	7.0	31.7	30.5	7.0	7.0	7.0	7.0		· -
Cyanide	C	10.0	10.0	10.0	10.0	10.0	10.0	10.0		

Analytical Method

F Furnace AA	P ICP/Flame AA	V Cold Vapor	C Colorimetric						
Sample's wet weight (gms) digested:									
for Hg analysis									
for ICP analysis									
for furnace AA analysis									
for Cyanide analysis									
Volumes used in preparing	sample for analysis:		<u> </u>						

- for Hg analysis 100 mls for ICP and AA analysis 200 mls for Cyanide analysis 250 mls
- UJ Value is undetected and the quantitation is approximate due to limitations Identified in the quality control review.
- R Value is rejected.